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This paper generalizes the linear stability analysis of Pearson for Marangoni 
instability to the case where surface tension depends on both temperature and solute 
concentration. The results are expressed in terms of a thermal Marangoni number 
B, and a solutal Marangoni number B,. It is found when Bs > 0 the onset of 
instability has the form of stationary convection, while when Bs < 0 there are 
circumstances in which the onset of instability is in the form of oscillatory convection. 

1. Introduction 
In  this paper the onset of convection, induced by surface tension, in a horizontal 

layer of fluid is examined. In  addition to heating the fluid from below or above, 
variations in solute concentration are considered. As in the case of BBnard cells 
induced by density variations, certain minimum requirements must be satisfied in 
order that cells may develop under the action of surface tension forces. Associated 
with these requirements are the dimensionless Marangoni and solutal Marangoni 
numbers which take critical values a t  the onset of convection. For the situation in 
which solute concentration is constant the reader is referred to the works of Pearson 
(1958) ; Davis (1969 a )  and Vidal & Acrivos (1  966). 

I n  the analysis presented here buoyancy terms are neglected in the equations of 
motion (cf. Pearson 1958). This is equivalent to considering a zero-gravity environ- 
ment, and enables the effects of surface tension to be more clearly seen. 

Attention is restricted to the linearized equations, and in the first part the critical 
Marangoni numbers for the onset of stationary convection are obtained. The analysis 
is then extended to examine the possibility of oscillatory convective instability 
occurring. 

One of the main applications of this work is in the area of crystal growing in a 
low-gravity environment, e.g. an orbiting spacecraft. In  crystals grown from melts 
and aqueous solution, convective flow is in general a beneficial influence, since it serves 
to reduce the diffusional barrier to crystal growth. However, it  has been found 
experimentally that when the flow has an oscillatory component there are marked 
impurity striations in the crystals. In  his review of hydrodynamics in crystal growth, 
Hurle (1976) has pointed out the need for further detailed study of convection in 
near-zero gravity. In  space processing, when buoyancy-driven convection is negligible, 
it  has been hoped that the inhomogeneous solute distribution in crystals, caused on 
Earth by buoyancy-driven time-dependent convection, could be avoided. However, 
in this situation surface tension driven convection plays a dominant role. The aim 
of this paper is to outline a procedure for determining, for a given material, whether 
oscillatory or stationary convection will be preferred. 

It is found that when both the Marangoni and solutal Marangoni numbers are 
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positive (i.e. when both temperature and concentration effects are destabilizing) then 
oscillatory instability does not occur and the principle of the exchange of stabilities 
is valid. However, when the Marangoni numbers have opposite signs, oscillatory 
instability occurs and values of the Prandtl and Schmidt numbers are found for which 
oscillatory instability is preferred to stationary convection. Calculations are performed 
for an aqueous solution of magnesium sulphate. 

An analysis of convection in a box is also included, and there the influence that 
sidewalls have on the onset of convection is detailed. Critical values of the Marangoni 
numbers for the onset of convection are obtained. These values are the starting point 
in a nonlinear analysis to predict sequences of transition from one steady convection 
state to another (see Rosenblat, Homsy & Davis 1982). 

2. The governing equations 
A small-disturbance analysis is performed for the Oberbeck-Boussinesq equations 

(Joseph 1976) when the fluid occupies a layer of uniform thickness d whose lower 
surface is in contact with a fixed plane (2 = 0) while the upper surface ( z  = d) is free. 
All physical properties of the fluid are assumed constant except surface tension, which 
varies linearly with temperature and Concentration. Throughout the work, gravity 
effects will be neglected and the free surface will be taken to be flat. 

The steady-state solution is one with both temperature and concentration gradients 
linear. To study the stability of this solution we consider a perturbation (u, 6 ,  c ) ,  where 
u = (u,v, w) is the perturbation velocity, 6 the temperature and c the solute 
concentration. A normal-mode analysis with time factor CT (possibly complex) and 
non-dimensional wavenumber 01 yields the non-dimensional linearized equations : 

(D2-a2) (D2-a2-q) W = 0, ( D 2 - ~ ' - P ~ q )  0 = W ,  ( D 2 - ~ ' - S ~ ~ ) C  = W ,  
(2.1 a, b,  c) 

where W ,  0 and c! are functions only of z ,  D = d/dz, and Pr and Sc are the Prandtl 
and Schmidt numbers. Equations (2.1) must be solved subject to the boundary 
conditions 

W ( 0 )  = DW(0) = 0, (2.2a) 

W(1) = 0, D2W(1) = 01~BT@(l)+a~BsG(l ) ,  (2.2c) 

O(0) = 0, DC(0) = 0 or C(0) = 0, (2.2b) 

DO(l)+L0(1)  = 0, DC(l)+KC(l) = 0. (2.2d) 

In the above BT and B, represent the thermal and solutal Marangoni numbers. 
- B, and - B, are measures of the rate of change of surface tension with respect to 
temperature and concentration, respectively, and are also dependent on the tem- 
perature and concentration gradients. The equation in which they occur equates the 
change in surface tension due to temperature and concentration variations across the 
surface to the shear stress experienced by the fluid at the surface. Equations ( 2 . 2 4  
are the general radiation conditions, and L and K may take values between 0 and 
00. L + 0 corresponds to an insulating boundary and L +cc to a conducting boundary. 
On the plane z = 0 only the extreme values are considered (2.2b). (Since the two 
extreme values do not lead to radically different results (see $93 and 4) the finding 
of an exhaustive solution for arbitrary values of L and K shall not be attempted.) 
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3. Stationary convection 
I n  the problem under consideration, the underlying operator of the linear problem 

is not symmetric and so we are unable to  deduce that u is real. Thus the possibility 
of oscillatory instability cannot be excluded and will be examined in $06-8. However, 
in this section we shall examine the onset of stationary convection for which the 
equations relevant to marginal stability are obtained by setting u = 0 in (2.1), i.e. 

( D 2 - ~ 2 ) 2 W = 0 ,  (D2-a2)O= W ,  (D2-a2)C= W .  ( 3 . 1 a , b , ~ )  

The solution of ( 3 . 1 ~ )  subject to W ( 0 )  = W(1) = DW(0) = 0 is 

z sinh az - az cosh az 
a cosh a - sinh a 

sinh a 
A some constant. 

The solution of (3 .1b)  subject to W(0)  = W(1) = DW(0) = 0 and D@(1) = -LO(l), 
O(0) = 0 is 

a cosh a - sinh a 
4a sinh a 

a cosh a - sinh a 
4a2 sinh a 

z2 cosh az - f z2  sinh az - zsinhaz 

} sinh a,] . 

It is easily seen that the solution of (3.1 c) with DC( 1) = - KC( 1 )  and C(0) = 0 is the 
same as that for 0 with L replaced by K.  Finally the solution of ( 3 . 1 ~ )  with 
DC(1) = -KC(l )  and DC(0) = 0 is 

a2 cosh2 a +a sinh a cosh a + sinh2 a + L(a2 +a sinh a cosh a + sinh2 a) 
4a2 sinh a(a cosh a + L sinh a) 

a cosh a - sinh a 
4a sinh a 

a cosh a - sinh a 
4a2 sinh a 

z2cosh az - fz2 sinh az - z sinh az 

} cosh a,]. 
(a cosh a - sinh a)2 + K(a2 +a sinh a cosh a- 2 sinh2 a) 

4a2 sinh a(a sinh a + K cosh a) 
3 -- 4a2 sinh az - 

Substitution of the last boundary condition, namely 

D2 W( 1 ) = a2BT @(I)  + a2BS C( I) ,  

yields a relationship between B,, B,, L ,  K and a. 

exmessed as 
When O(0) = C(0) = 0 (ie.  a conducting permeable base) this relationship can be 

a3 cosh a - sinh3 a a3 cosh a - sinh3 a 
2a(a - sinh a cosh a )  - 4(a cosh a+ L sinh a )  BT-4(a cosh a + K sinh a) B, = 0. 

Also O(0) = DC(0) = 0 leads to the relationship 

a3 cosh a - sinh3 a 
4(a cosh a + L sinh a) 

2 4 a  - sinh a cosh a) - BT 

a3 sinh a - a2 cosh a + 201 sinh a - sinh2 a cosh a 
4(a sinh a + K cosh a) 

Bs = 0. - 

When B, = 0 these reduce to the equation that Pearson (1958) obtained for a 
conducting lower boundary. 

I n  figures 1 and 2 the marginal stability curves are plotted for various values of 
L and K.  To obtain the curves first fix a value of Bs and then calculate the critical 
value of a that  makes B, a minimum. Tables 1 and 2 give values of the critical 
wavenumber a and Marangoni number BT for B, = -50, 0, 100. Figure 3 shows a 
plot of a against B, for Bs = -50, 0, 100. 
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FIQURE 1. Calculated marginal stability curves, Bs versus B, for a conducting permeable base 
(i.e. @(O) = C(0) = 0). 

FIQURE 2. Calculated marginal stability curves, B, versus B, for a conducting impermeable 
base (i.e. @(O) = DC(0) = 0). 

The missing values in table 2 are accounted for by the fact that there is an 
asymptote at  B, = 48. As Bs+48, a+O and B,+- CO. For Bs > 48 there is no effect 
on BT. 

4. Conclusions 
First consider figures 1 and 2, which refer to a fluid with a permeable and an 

impermeable conducting base respectively. In both figures when 1; = 0 and K = 1O1O 
then B, is constant. The thermal effect is then decoupled from the solute effect. Apart 
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Bs = -50 Bs = 0 Bs = 100 
L K a BT a BT a BT 
0 0 1.99 129.6 1.99 79.6 
0 1 1.89 113.1 1.99 79.6 
1 0 2.40 187.2 2.25 116.1 
1 1 2.25 166.1 2.25 116.1 
5 5 2.60 300.6 2.60 250.6 

10 10 2.74 463.4 2.74 413.4 
10'0 10'0 3.01 3.2 x 10" 3.01 3.2 x 10" 
10'0 0 3.66 4.7 x 10" 3.01 3.2 x lo1' 
0 10'0 1.99 79.6 1.99 79.6 

TABLE 1. Conducting permeable base 

1.99 - 20.4 
2.21 11.2 
1.93 -30.4 
2.25 16.1 
2.60 150.6 
2.74 313.4 
3.01 3.2 x 10'' 

1.99 79.6 
1.82 - 1.0 x 10" 

B, = -50 Bs = 0 Bs = 100 
L K a BT a BT a BT 
0 0 2.29 139.1 
0 1 2.07 120.2 
1 0 2.61 195.0 
1 1 2.41 172.7 
5 5 2.65 304.6 

10 10 2.77 466.7 
1010 10'0 3.01 3.2 x 10" 
10'0 0 3.73 4.7 x 10" 
0 10'0 1.99 79.6 

1.99 79.6 
1.99 79.6 1.73 -3.1 
2.25 116.1 
2.25 116.1 1.72 -4.8 
2.60 250.6 2.47 141.7 
2.74 413.4 2.67 306.5 
3.01 3.2 x 10" 3.01 3.2 x 10" 
3.01 3.2 x 10" 
1.99 79.6 1.99 79.6 

TABLE 2. Conducting impermeable base 

0 50 100 150 200 250 300 
BT 

FIQURE 3. Calculated stability curves, BT versus a, for various values of B,. L = 0, K = 1 at  the 
free surface and the base is conducting and permeable. 
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from situations where decoupling takes place, it can be seen that BT decreases with 
increase of B,. Thus the two agencies causing instability reinforce each other. With 
a conducting permeable base and L = K then the temperature perturbation 8 and 
the concentration perturbation c satisfy formally identical boundary conditions. Thus 
the stability curve in the (BT, Bs)-plane is the straight line 

BT+Bs = B&, 

where B$ is the critical value of B, when Bs = 0. When there is a straight line there 
is maximum reinforcement of the two effects. Note that the coupling between BT and 
B, is less tight as L and K increase. Also larger positive values of L and K lead to 
greater stability. 

From tables 1 and 2 the following conclusions may be drawn. 
(i) As L increases (for fixed K )  the corresponding wave number increases, so that 

the size of the convection cell decreases. 
(ii) For a conducting permeable boundary and L = K then the critical wavenumber 

is the same for all (BT, Bs)-combinations. 
In addition, we note that Pearson (1958), when considering the situation where 

Bs = 0, obtained the critical values a = 2.0, BT = 80 for a conducting lower 
boundary. These correspond to the results obtained here. 

In figure 3 the marginal stability curves for a conducting permeable base have been 
plotted. These curves display a critical (minimum) value of B, corresponding to a 
particular value of a for which stable disturbances are first possible. The curve plotted 
for Bs = 0 is that obtained by Pearson. It can be seen that as Bs increases the critical 
wave number increases. 

5. Convection in a box 
In this section the influence which adiabatic impenetrable sidewalls exert on the 

onset of convection will be investigated briefly. Suppose the fluid is in a rectangular 
box where for simplicity the liquid is allowed to slip on the sidewalls. BT is found 
as a function of the box dimensions and B,. 

Adopting the procedure of Rosenblat et al. (1982), the boundary conditions to be 
satisfied at the sidewalls are 

u = W ,  = U, = 8, = c, = 0 (x = O,a,; 0 < y < a 2 ;  0 < 2 < l ) ,  

v = w Y = uY = 8, = cy = 0 (y = 0 ,a2;  0 < x < a,; 0 < z < l ) ,  

(5.1) 

(5.2) 

(5.3) 

and we seek separable solutions of the form 
m,xx m2ny 

a1 a2 
(20,8, c )  = (W(z) ,  O(Z), C(2)) cos-cos-, 

with similar definitions for u and u. m, and m2 run over all non-negative integers. 

but with a replaced by A,  where A is an effective wavenumber given by 
The equations governing the onset of stationary convection are still (3.1) and (2.2) 

(5.4) 

In  figure 4, B,  is given as a function of a, for u2 = 0.5 and Bs = 100. Also we have 
fixed L = K = 10 and assumed the lower plate to be conducting and impermeable. 
It may be seen that the preferred mode (i.e. the mode having the lowest critical 
Marangoni number) is dependent on the box size a,. In the situation described by 
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250 I I I I I I I I 
I 1 1 I * 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 
a1 

FIGURE 4. Stability curves B,  versus a, for L = K = 10, Bs = 100 at a2 = 0.5. The pairs 
(ml, m,) denote integral number of cycles in (al ,  a2). 

figure 4 this sequence of modes is m2 = 0, m, = 1 ,2 ,3 ,4 .  For box sizes a, - m, nla, 
with m, = 1 ,2 ,3 ,  . . . BT is a minimum a t  the value 306.5 appropriate to infinite layers. 
Away from these values the sidewalls exert a stabilizing influence. 

6. The onset of oscillatory convective instability 
It is the purpose of this section to examine whether oscillatory convective 

instability, driven by surface-tension forces, occurs. For the situation in which only 
a temperature gradient is present, Vidal & Acrivos (1966) have shown that oscillatory 
instability does not occur. The analysis here of the situation where a concentration 
gradient is also present is similar to that of Vidal & Acrivos and McConaghy & 
Finlayson (1969) ; the exact solution to the differential equations is substituted into 
the boundary conditions, leaving a complex number for the eigenvalue, the Marangoni 
number. Since this number is real (a ratio of physical parameters), solutions can exist 
only if the imaginary part of the complex number is zero. The parameter space is 
searched numerically for situations where this is true. 

To keep the notation the same as that of Vidal & Acrivos, the change of variable 
CT = CrJPr is made. Then (2.1) may be written as 

(6.1) I [a,-Pr(D2-a2)] (D2-u2) W = 0 

[ cT~- (D~-u~) ]O  = - W  
Pr 

[a,-7(D2-u2)]C = -7W, where T = -. sc 
In  order to reduce the amount of numerical work, these will be solved subject to the 
following more simple but still representative boundary conditions : 

W ( 0 )  = DW(0) = W (  1 )  = 0, ) 
O(0) = DQ(1) = 0, 

C(0) = DC(1) = 0, 

For a non-stationary neutral state CT, = is with s real, in which case (6.1) and (6.2) 
may be solved analytically to obtain the relationship 

u3 + ia, = BT(a,+ ia,) + 7Bs(a, + iu6), (6.3) 
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where a,, a2, . . . , a6 are real-valued analytic functions of a, s, Pr and Sc, which may 
be obtained from the author on request. When Bs = 0, (6.3) reduces to the equation 
obtained by Vidal & Acrivos when no concentration gradient is present. 

Solving for BT, one obtains 

Since BT must clearly be real 

u , ( u , - ~ B S U ~ ) - U ~ , ( U ~ - ~ B S U ~ )  = 0. (6.4) 

For fixed values of Bs it  must now be determined which values of a, Pr, Sc and s 
satisfy (6.4). If the principle of the exchange of stabilities is valid, only the value s = 0 
will make lm BT vanish. 

7. Results (1) 
At first only non-negative values of both BT and Bs were considered. In particular, 

Bs was given the values 0, 10, 20, . . . , 70, 75. (BT becomes negative at values of Bs 
slightly above 75, the exact value depending on the Prandtl and Schmidt numbers.) 
With 7 = Pr/Xc, a value of Pr was fixed and numerical calculations were performed 
for 7-1 = 0.01, 0.5, 0.9, 5.0, lo2 and lo3. The values used for Pr were 0.01, 0.5, 0.9, 
5.0, lo2 and lo3, together with the two asymptotic conditions Pr-tO and Pr+co. 
a was varied from 0 to 10 in steps of 0.5. 

In all cases it was found that the only real value of s that satisfied 

U , ( U ~ - ~ B S U , ) - U ~ ( U ~ - ~ B S U ~ )  = 0 

was s = 0. This indicates that for Bs in the range (0,75) the marginal or neutral state 
for the surface-tension-driven convection is stationary. 

This result is in agreement with previous work. When B, and Bs are both positive 
then both temperature and concentration effects are destabilizing. This was precisely 
the situation for which Joseph & Shir (1968), in their analysis of buoyancy-driven 
convection, concluded that the principle of the exchange of stabilities is valid. 
However, it should be pointed out that in their case, in order to have both effects 
destabilizing, they had to heat from below and salt from above. Yet, even if one both 
heats and salts from below in the case of surface-tension-driven convection it is 
possible that the principle of the exchange of stabilities is valid. 

This could occur if both the rate of change of surface tension with temperature and 
with concentration were negative. Almost all materials satisfy the former; most 
water-soluble organic compounds would satisfy the latter (see Schwartz & Perry 
1966). 

8. Results (2) 
In  this section negative values of Bs are considered. If oscillatory instability occurs, 

the neutral stability locus will be characterized by non-zero frequency factors s which 
make lm B, vanish for a given Prandtl number, Schmidt number and wavenumber. 

For many of the fluids with which the crystal grower works (e.g. liquid metals, 
semiconductors and oxides) tabulated values of the effect of increasing concentration 
on the surface tension of the fluid are evidently scarce. Thus, a t  present, it is not 
known whether for a given positive concentration gradient Bs will be negative or 
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Nature of 
instability 

Stationary 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 

Schmidt 
number Sc 

All 
50 
20 
10 
8 
7.85 
7.80 

Critical 
frequency 
factor sc 

0 
-0.70 
- 0.42 
-0.43 
-0.21 
-0.21 
-0.14 

TABLE 3 

Critical 
Marangoni 
number B+ 

129.607 
85.472 

116.44 
124.94 
129.014 
129.020 
129.634 

Critical 
wavenumber 

UC 

1.99 
1.66 
1.45 
1.92 
1.90 
1.93 
1.87 

positive. However, this is not the case when growing crystals from aqueous solution; 
for most inorganic salts in aqueous solution the rate of change of surface tension with 
concentration is positive. 

We consider now the specific example of a 4 % solution of MgSO, in water. From 
Weast (1982) the Prandtl and Schmidt numbers may be calculated and are Pr = 2.0 
and Sc = 1700 (correct to 2 significant figures). When both temperature and 
concentration gradients are positive we find that B, > 0 and Bs < 0. 

To consider a particular case, B, = -50 was taken. It was found that oscillatory 
instability can occur, and in table 3 the value of the critical Marangoni number for 
the onset of oscillatory instability is recorded and compared to the value obtained 
in the case of stationary convection (5  = 0). 

For the calculations carried out in table 3, Pr was set equal to 2. It was found that 
a Schmidt number Sc* exists such that for all S c  < Sc* the critical Marangoni number 
for oscillatory instability is always greater than the critical Marangoni number for 
stationary instability. Hence for Sc < Sc* convection will always occur as stationary 
convection, and it was found numerically that SC* = 7.80. 

Hence it is clear that for the solution of MgSO, under consideration oscillatory 
convection will be preferred. However, for the example cited by Hurle & Jakeman 
(1971) of a water-methanol system we may conclude that for positive temperature 
and concentration gradients overstability is ruled out. In that case Pr = 20 and 
Sc = 890 (for a 4 % solution), although BT > 0 and B, > 0, and the results of 5 7 then 
show that stationary convection is preferred. 

Again the results in this section are in agreement with previous writers. McConaghy 
& Finlayson (1969) found that when two effects were opposing (in their case the effect 
of temperature was destabilizing and the effect of rotation was stabilizing) then 
oscillatory instability occurs and is preferred for a certain range of Prandtl number. 

Finally we note that in space gravity is never zero but very small. In this situation 
we may regard BT and Bs as bounded perturbations to a symmetric operator 
(provided we heat from below and salt from above). For sufficiently small BT and 
Bs it  may then be deduced from Davis’ (19693) results that, in contrast with the 
zero-gravity case, the possibility of overstability is excluded, regardless of the sign 
of B, and B,. Such a situation could occur when the fluid layer is very shallow. 

The writer would like to thank Dr B. Straughan for helpful advice and discussions 
and the Science and Engineering Research Council of Great Britain for a Research 
Studentship. 
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